In a nutshell: The golden-section search

Given a continuous real-valued function f of a real variable defined on the interval $\left[a_{0}, b_{0}\right]$ where there is known to be a minimum on that interval. We will assume that the minimum is not at an end-point. This algorithm uses iteration, bracketing and weighted averages to find the minimum.

Parameters:
$\varepsilon_{\text {step }} \quad$ The maximum error in the value of the minimum cannot exceed this value.
$\varepsilon_{\mathrm{abs}} \quad$ The difference in the value of the function after successive steps cannot exceed this value.
$N \quad$ The maximum number of iterations.

1. Let $k \leftarrow 0$
2. Let $w \leftarrow b_{k}-a_{k}, x_{1} \leftarrow b_{k}-w / \phi, x_{2} \leftarrow a_{k}+w / \phi$.
3. Given that we have constrained the minimum to $\left[a_{k}, b_{k}\right]$, if $\left(b_{k}-a_{k}\right) / \phi<\varepsilon_{\text {step }}$ and $\min \left\{\left|f\left(x_{1}\right)\right|,\left|f\left(x_{2}\right)\right|\right\}<\varepsilon_{\text {abs }}$, we are done, and return whichever interior point has the smallest absolute value, returning either in the very unlikely case that $\left|f\left(x_{1}\right)\right|=\left|f\left(x_{2}\right)\right|$.
4. If $k>N$, we have iterated N times, so stop and return signalling a failure to converge.
5. If $f\left(x_{1}\right)<f\left(x_{2}\right)$, let $a_{k+1} \leftarrow a_{k}$ and $b_{k+1} \leftarrow x_{2}$;
6. if $f\left(x_{2}\right)<f\left(x_{1}\right)$, let $a_{k+1} \leftarrow x_{1}$ and $b_{k+1} \leftarrow b_{k}$;
7. otherwise $f\left(x_{2}\right)=f\left(x_{1}\right)$, which is extremely unlikely, but in this case, we would have to apply the goldensection search to both sub-intervals to determine which sub-interval to continue searching.
8. Increment k and return to Step 2.

Convergence

Having found x_{1} and x_{2}, the maximum error at any step is $\left(b_{k}-a_{k}\right) / \phi$, so with each step, the maximum error is reduced by $1 / \phi$. Thus, if h is the error, the error decreases according to $\mathrm{O}(h)$.

